618 research outputs found

    Quantum repeaters with imperfect memories: cost and scalability

    Full text link
    Memory dephasing and its impact on the rate of entanglement generation in quantum repeaters is addressed. For systems that rely on probabilistic schemes for entanglement distribution and connection, we estimate the maximum achievable rate per employed memory for our optimized partial nesting protocol. We show that, for any given distance LL, the polynomial scaling of rate with distance can only be achieved if quantum memories with coherence times on the order of L/cL/c or longer, with cc being the speed of light in the channel, are available. The above rate degrades as a power of exp[(L/c)/τc]\exp[-\sqrt{(L/c)/ \tau_c}] with distance when the coherence time τcL/c\tau_c \ll L/c.Comment: Extended version with 5 figure

    On quantum non-signalling boxes

    Full text link
    A classical non-signalling (or causal) box is an operation on classical bipartite input with classical bipartite output such that no signal can be sent from a party to the other through the use of the box. The quantum counterpart of such boxes, i.e. completely positive trace-preserving maps on bipartite states, though studied in literature, have been investigated less intensively than classical boxes. We present here some results and remarks about such maps. In particular, we analyze: the relations among properties as causality, non-locality and entanglement; the connection between causal and entanglement breaking maps; the characterization of causal maps in terms of the classification of states with fixed reductions. We also provide new proofs of the fact that every non-product unitary transformation is not causal, as well as for the equivalence of the so-called semicausality and semilocalizability properties.Comment: 18 pages, 7 figures, revtex

    Quantum discord bounds the amount of distributed entanglement

    Full text link
    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of non-classical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states and put further limits on this phenomenon.Comment: 8 pages, 1 figure, RevTeX4; Accepted for publication in Phys. Rev. Let

    Experimental bound entanglement in a four-photon state

    Full text link
    Entanglement [1, 2] enables powerful new quantum technologies [3-8], but in real-world implementations, entangled states are often subject to decoherence and preparation errors. Entanglement distillation [9, 10] can often counteract these effects by converting imperfectly entangled states into a smaller number of maximally entangled states. States that are entangled but cannot be distilled are called bound entangled [11]. Bound entanglement is central to many exciting theoretical results in quantum information processing [12-14], but has thus far not been experimentally realized. A recent claim for experimental bound entanglement is not supported by their data [15]. Here, we consider a family of four-qubit Smolin states [16], focusing on a regime where the bound entanglement is experimentally robust. We encode the state into the polarization of four photons and show that our state exhibits both entanglement and undistillability, the two defining properties of bound entanglement. We then use our state to implement entanglement unlocking, a key feature of Smolin states [16].Comment: 10 pages, 6 figures. For a simultaneously submitted related work see arXiv:1005.196

    Universal resources for approximate and stochastic measurement-based quantum computation

    Full text link
    We investigate which quantum states can serve as universal resources for approximate and stochastic measurement-based quantum computation, in the sense that any quantum state can be generated from a given resource by means of single-qubit (local) operations assisted by classical communication. More precisely, we consider the approximate and stochastic generation of states, resulting e.g. from a restriction to finite measurement settings or from possible imperfections in the resources or local operations. We show that entanglement-based criteria for universality obtained for the exact, deterministic case can be lifted to the much more general approximate, stochastic case, moving from the idealized situation considered in previous works, to the practically relevant context of non-perfect state preparation. We find that any entanglement measure fulfilling some basic requirements needs to reach its maximum value on some element of an approximate, stochastic universal family of resource states, as the resource size grows. This allows us to rule out various families of states as being approximate, stochastic universal. We provide examples of resources that are efficient approximate universal, but not exact deterministic universal. We also study the robustness of universal resources for measurement-based quantum computation under realistic assumptions about the (imperfect) generation and manipulation of entangled states, giving an explicit expression for the impact that errors made in the preparation of the resource have on the possibility to use it for universal approximate and stochastic state preparation. Finally, we discuss the relation between our entanglement-based criteria and recent results regarding the uselessness of states with a high degree of geometric entanglement as universal resources.Comment: 17 pages; abstract shortened with respect to the published version to respect the arXiv limit of 1,920 character
    corecore